首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1495篇
  免费   80篇
  国内免费   14篇
化学   946篇
晶体学   3篇
力学   37篇
数学   305篇
物理学   298篇
  2023年   8篇
  2022年   13篇
  2021年   29篇
  2020年   38篇
  2019年   37篇
  2018年   21篇
  2017年   28篇
  2016年   65篇
  2015年   50篇
  2014年   51篇
  2013年   91篇
  2012年   100篇
  2011年   119篇
  2010年   86篇
  2009年   68篇
  2008年   86篇
  2007年   79篇
  2006年   48篇
  2005年   67篇
  2004年   61篇
  2003年   48篇
  2002年   53篇
  2001年   33篇
  2000年   22篇
  1999年   21篇
  1998年   23篇
  1997年   14篇
  1996年   18篇
  1995年   14篇
  1994年   14篇
  1993年   8篇
  1992年   6篇
  1990年   5篇
  1989年   4篇
  1988年   5篇
  1987年   4篇
  1986年   7篇
  1985年   8篇
  1984年   10篇
  1983年   7篇
  1982年   10篇
  1981年   14篇
  1980年   10篇
  1978年   14篇
  1977年   9篇
  1976年   6篇
  1975年   8篇
  1974年   6篇
  1973年   6篇
  1972年   7篇
排序方式: 共有1589条查询结果,搜索用时 531 毫秒
91.
The photophysical properties of [Re(CO)3(L ‐N3)]Br (L ‐N3=2‐azido‐N,N‐bis[(quinolin‐2‐yl)methyl]ethanamine), which could not be localized in cancer cells by fluorescence microscopy, have been revisited in order to evaluate its use as a luminescent probe in a biological environment. The ReI complex displays concentration‐dependent residual fluorescence besides the expected phosphorescence, and the nature of the emitting excited states have been evaluated by DFT and time‐dependent (TD) DFT methods. The results show that fluorescence occurs from a 1LC/MLCT state, whereas phosphorescence mainly stems from a 3LC state, in contrast to previous assignments. We found that our luminescent probe, [Re(CO)3(L ‐N3)]Br, exhibits an interesting cytotoxic activity in the low micromolar range in various cancer cell lines. Several biochemical assays were performed to unveil the cytotoxic mechanism of the organometallic ReI bisquinoline complex. [Re(CO)3(L ‐N3)]Br was found to be stable in human plasma indicating that [Re(CO)3(L ‐N3)]Br itself and not a decomposition product is responsible for the observed cytotoxicity. Addition of [Re(CO)3(L ‐N3)]Br to MCF‐7 breast cancer cells grown on a biosensor chip micro‐bioreactor immediately led to reduced cellular respiration and increased glycolysis, indicating a large shift in cellular metabolism and inhibition of mitochondrial activity. Further analysis of respiration of isolated mitochondria clearly showed that mitochondrial respiratory activity was a direct target of [Re(CO)3(L ‐N3)]Br and involved two modes of action, namely increased respiration at lower concentrations, potentially through increased proton transport through the inner mitochondrial membrane, and efficient blocking of respiration at higher concentrations. Thus, we believe that the direct targeting of mitochondria in cells by [Re(CO)3(L ‐N3)]Br is responsible for the anticancer activity.  相似文献   
92.
Novel nanoscaled cellulose particles were prepared using high-pressure homogenization of aqueous media contenting treated cellulose samples in a Microfluidizer® processor (MF). Here, we present the generation of spherical cellulose nanoparticles as an extension of previously published reports of nano fibrillated cellulose. Although MF treatment of unmodified cellulose yields nanofibrils which are reported in several publications, in the current work different kinds of pretreatments were proven to be necessary to obtain spherical structured cellulose nanoparticles. One such treatment may be the decrystallization of cellulose regenerating it from N-methylmorpholine-N-oxid-monohydrate (NMMNO*H2O). Nanocellulose was then obtained by a subsequent high-pressure mechanical treatment of the precipitate in aqueous dispersion. Decrystallization was also realized by grinding cellulose in a planetary ball mill. The resulting amorphous intermediates were characterized by Raman spectroscopy. Another approach tested was hydrolysis and subsequent mechanical treatment using an Ultra-Turrax® and MF. Another alternative was given by the mechanical treatment of aqueous dispersions of low substituted cellulose derivatives such as carboxymethyl cellulose and oxidized cellulose without any further hydrolysis.  相似文献   
93.
94.
The stannides RE2Au3Sn6 (RE = La, Ce, Pr, Nd, Sm) were synthesized from the elements by arc-melting. Small single crystals were grown by annealing samples in sealed tantalum tubes in an induction furnace with a special annealing sequence. The polycrystalline phases were characterized through their X-ray powder diffraction pattern. The structures of Ce2Au3Sn6, Pr2Au3Sn6, and Nd2Au3Sn6 were refined from single-crystal X-ray diffractometer data. The RE2Au3Sn6 stannides crystallize with the orthorhombic La2Zn3Ge6 type, space group Cmcm. The basic structural building units are Au1@Sn4 tetrahedra and Au2@Sn5 square pyramids. These units are condensed to layers and the structure can be described by a simple stacking of tetrahedral and pyramidal layers with the rare earth cations in between. Temperature dependent susceptibility studies indicate that all rare earth atoms are in the trivalent oxidation state, as their effective magnetic moments match the expected values of the free RE3+ ions. Pr2Au3Sn6 and Nd2Au3Sn6 exhibit antiferromagnetic ordering at TN = 6.3(1) and 6.7(1) K. Investigations of the electrical resistivity of La2Au3Sn6 and Ce2Au3Sn6 confirmed that these compounds are metallic, for La2Au3Sn6 a lower resistivity was observed, in line with the absence of screening unpaired electrons. 119Sn Mössbauer spectra for La2Au3Sn6, Ce2Au3Sn6, Pr2Au3Sn6 and Nd2Au3Sn6 show a complex superposition of three sub-spectra which can be differentiated through their distinctly different quadrupole splitting parameters. The isomer shifts (1.87 to 2.22 mm · s–1) indicate significant s electron density at the tin nuclei.  相似文献   
95.
Hybridizing graphene and molecules possess a high potential for developing materials for new applications. However, new methods to characterize such hybrids must be developed. Herein, the wet-chemical non-covalent functionalization of graphene with cationic π-systems is presented and the interaction between graphene and the molecules is characterized in detail. A series of tricationic benzimidazolium salts with various steric demand and counterions was synthesized, characterized and used for the fabrication of graphene hybrids. Subsequently, the doping effects were studied. The molecules are adsorbed onto graphene and studied by Raman spectroscopy, XPS as well as ToF-SIMS. The charged π-systems show a p-doping effect on the underlying graphene. Consequently, the tricationic molecules are reduced through a partial electron transfer process from graphene, a process which is accompanied by the loss of counterions. DFT calculations support this hypothesis and the strong p-doping could be confirmed in fabricated monolayer graphene/hybrid FET devices. The results are the basis to develop sensor applications, which are based on analyte/molecule interactions and effects on doping.  相似文献   
96.
Textbook procedures require the use of individual aptamers enriched in SELEX libraries which are subsequently chemically synthesized after their biochemical characterization. Here we show that this reduction of the available sequence space of large libraries and thus the diversity of binding molecules reduces the labelling efficiency and fidelity of selected single aptamers towards different strains of the human pathogen Pseudomonas aeruginosa compared to a polyclonal aptamer library enriched by a whole-cell-SELEX involving fluorescent aptamers. The library outperformed single aptamers in reliable and specific targeting of different clinically relevant strains, allowed to inhibit virulence associated cellular functions and identification of bound cell surface targets by aptamer based affinity purification and mass spectrometry. The stunning ease of this FluCell-SELEX and the convincing performance of the P. aeruginosa specific library may pave the way towards generally new and efficient diagnostic techniques based on polyclonal aptamer libraries not only in clinical microbiology.  相似文献   
97.
The homogeneity range of ternary iron indium thiospinel at 873 K was investigated. A detailed study was focused on two distinct series (y=z): 1) a previously reported charge-balanced (In0.67+0.33y0.33−0.33y)tetr[In2−zFez]octS4 (A1-series; □ stands for vacancy; the abbreviations “tetr” and “oct” indicate atoms occupying tetrahedral 8a and octahedral 16d sites, respectively) and 2) a new charge-unbalanced (In0.67+y0.33−y)tetr[In2−zFez]octS4 (A2-series). Fe atoms were confirmed to exclusively occupy an octahedral position in both series. An unusual reduction of the unit cell parameter with increasing Fe content is explained by differences in the ionic radii between Fe and In, as well as by an additional electrostatic attraction originating from charge imbalance (latter only in A2-series). The studied compound is an n-type semiconductor, and its charge carrier concentration increases or decreases for larger Fe content within the A1- and A2-series, respectively. The thermal conductivity κtot is significantly reduced upon increasing vacancy concentration, whereas the change of power factor is insufficient to drastically improve the thermoelectric figure of merit.  相似文献   
98.
99.
The fall colors are signs of chlorophyll breakdown, the biological process in plants that generates phyllobilins. Most of the abundant natural phyllobilins are colorless, but yellow phyllobilins (phylloxanthobilins) also occur in fall leaves. As shown here, phylloxanthobilins are unique four‐stage photoswitches. Which switching mode is turned on is controlled by the molecular environment. In polar media, phylloxanthobilins are monomeric and undergo photoreversible Z/E isomerization, similar to that observed for bilirubin. Unlike bilirubin, however, the phylloxanthobilin Z isomers photodimerize in apolar solvents by regio‐ and stereospecific thermoreversible [2+2] cycloadditions from self‐assembled hydrogen‐bonded dimers. X‐ray analysis revealed the first stereostructure of a phylloxanthobilin and its hydrogen‐bonded self‐templating architecture, helping to rationalize its exceptional photoswitch features. The chemical behavior of phylloxanthobilins will play a seminal role in identifying biological roles of phyllobilins.  相似文献   
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号